3.961 \(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=317 \[ -\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d}-\frac {2 C (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}+\frac {2 \sqrt {a+b} (B-C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d} \]

[Out]

-2*(a-b)*C*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(
d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+2*(B-C)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)
/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b
/d-2*A*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1
-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4058, 3921, 3784, 3832, 4004} \[ -\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d}-\frac {2 C (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}+\frac {2 \sqrt {a+b} (B-C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*C*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)
]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) + (2*Sqrt[a + b]*(B -
C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c +
d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) - (2*A*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a +
 b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqr
t[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*d)

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx &=C \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx+\int \frac {A+(B-C) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} C \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 d}+A \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+(B-C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} C \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {2 \sqrt {a+b} (B-C) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 16.95, size = 758, normalized size = 2.39 \[ \frac {4 C \sin (c+d x) \cos (c+d x) (a \cos (c+d x)+b) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{b d \sqrt {a+b \sec (c+d x)} (A \cos (2 c+2 d x)+A+2 B \cos (c+d x)+2 C)}-\frac {4 \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {a \cos (c+d x)+b} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (b (A-B-C) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-2 A b \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-2 A b \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+C (a+b) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+a C \tan ^5\left (\frac {1}{2} (c+d x)\right )-2 a C \tan ^3\left (\frac {1}{2} (c+d x)\right )+a C \tan \left (\frac {1}{2} (c+d x)\right )-b C \tan ^5\left (\frac {1}{2} (c+d x)\right )+b C \tan \left (\frac {1}{2} (c+d x)\right )\right )}{b d \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right )^{3/2} \sec ^{\frac {3}{2}}(c+d x) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}} \sqrt {a+b \sec (c+d x)} (A \cos (2 c+2 d x)+A+2 B \cos (c+d x)+2 C)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(4*C*Cos[c + d*x]*(b + a*Cos[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sin[c + d*x])/(b*d*(A + 2*C + 2
*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[a + b*Sec[c + d*x]]) - (4*Sqrt[b + a*Cos[c + d*x]]*(A + B*Sec[c + d
*x] + C*Sec[c + d*x]^2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(a*C*Tan[(c + d*x)/2] + b*C*Tan[(c + d*x)/2] - 2*a
*C*Tan[(c + d*x)/2]^3 + a*C*Tan[(c + d*x)/2]^5 - b*C*Tan[(c + d*x)/2]^5 - 2*A*b*EllipticPi[-1, ArcSin[Tan[(c +
 d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/
2]^2)/(a + b)] - 2*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - T
an[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (a + b)*C*EllipticE[A
rcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b -
a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + b*(A - B - C)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a -
 b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[
(c + d*x)/2]^2)/(a + b)]))/(b*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(3/2)*Sqrt[a +
b*Sec[c + d*x]]*(1 + Tan[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 +
 Tan[(c + d*x)/2]^2)])

________________________________________________________________________________________

fricas [F]  time = 27.86, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\sqrt {b \sec \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 2.46, size = 1193, normalized size = 3.76 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

2/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(A*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^
(1/2))*sin(d*x+c)*b-2*A*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*b-B*cos(d*x+c)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+
b))^(1/2))*sin(d*x+c)*b-C*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b+C*cos(d*x+c)*(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b)
)^(1/2))*sin(d*x+c)*a+C*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b*si
n(d*x+c)-2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+co
s(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c)
)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-C*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),
((a-b)/(a+b))^(1/2))*b*sin(d*x+c)+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^
(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*sin(d*x+c)+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin
(d*x+c)*b-C*cos(d*x+c)^2*a+C*cos(d*x+c)*a-C*cos(d*x+c)*b+C*b)/sin(d*x+c)^5/(b+a*cos(d*x+c))/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________